
NAT L INST. OF STAND & TECH R.I.C.

A11103 flD2HM3

An Algorithm to
Position the NIST
Advanced Automated Master
Angle Calibration System (AAMACS)
to the Least Angular Step

David E. Gilsinn

W. Tyler Estler

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Manufacturing Engineering Laboratory

Gaithersburg, MD 20899

~QC—
100

.U56

4878

1992

C.2

NIST



1

I



NISTIR 4878

An Algorithm to
Position the NIST
Advanced Automated Master
Angle Calibration System (AAMACS)
to the Least Angular Step

David E. Gilsinn

W. Tyler Estler

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Manufacturing Engineering Laboratory

Gaithersburg, MD 20899

July 1992

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

TECHNOLOGY ADMINISTRATION
Robert M. White, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director



?^--.-;;p:/"!r''';l
;^.’.t'-=:' ,:>'-4t,; V.'., , m.

Ciwi^rif9>,u*rt^v 1

•^^¥1



Abstract

An algorithm based on number theoretic arguments is given that shows how to position the

NIST Advanced Automated Master Angle Calibration System (AAMACS) to its least

angular step. AAMACS consists of three stacked independently driven serrated tooth

indexing tables arranged to rotate concentrically around a common vertical axis. The least

angular step between nearest neighbor positions of the topmost table is 80^^ =

277/(379,080,000) rad. The problem of how to select the indexed tooth position of each of

the independent tables reduces to the solution of a Diophantine equation in three

unknowns. This equation is solved by use of the classic Euclidean Algorithm.

Key words: angle calibration; Euclidean algorithm; Diophantine equations; metrology;

number theory; polygon mirrors; small angle measurement
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1.0 Introduction

Until recently, the basis techniques for calibrating indexing tables, precision polygon

mirrors, and rotary encoders at NIST and other metrology laboratories had not changed

greatly in more than thirty years. A series of round-robin intercomparisons involving eight

national laboratories demonstrated variability of approximately ± 0.2 arc-sec (±1 prad)

in the measured face-to-face errors of two 12-sided polygon mirrors. This is a typical level

of repeatability observed at NIST for precision artifacts with long measurement histories.

In studies supported by the Calibration Coordination Group of the Department of Defense

and, more recently, by the Strategic Defense Initiative Organization, we identified a number
of factors which conspire to limit the achievable accuracy of angular measurements and

calibrations. Principal among these factors are (1) thermal drift associated with manual

procedures, (2) refraction and air turbulence effects on small-angle measurements, (3)

seismic and acoustic disturbances, and (4) optical errors in autocollimators and polygon

mirrors. We have recently installed a new automated angle calibration facility at NIST
designed to minimize measurement errors and achieve a factor of ten improvement in full-

circle angle metrology.

Called the Advanced Automated Master Angle Calibration System (AAMACS), the new
facility has three major components: (a) a very high resolution indexing table system, (b)

a thermally stable, vibration-isolated, custom optical table, and (c) a high-resolution, laser

interferometric small-angle measuring system. The heart of the apparatus is a set of three

stacked independently driven serrated tooth indexing tables arranged to rotate

concentrically around a common vertical axis. This stack is topped by a precision air

bearing servo table with integral motor/optical encoder package. The stacked indexing

tables form a rotary analog of a differential screw. The tooth numbers of these tables

(832=(13)(2^), 729=3^ and 625=5'* respectively) are relatively prime integers, so that the

number of discrete angular positions of the topmost table is (832) (729) (625) =

379,080,000. Conversely, the least angular step between nearest neighbor positions of the

topmost table is

= 277/(379,080,000) rad,

« 17 nrad (0.003 arc-sec).

If each tooth is numbered, the object of this note is to determine how to select three

integers x, y, z so that

x(27r/625) + y(27r/729) + z(277/832) =
(
1 . 1

)
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where 27r/625, 27r/739, are the smallest angular increments of each of the 3 tables

individually. For notation let = 625, N2 = 729 and N3 = 832. If (1.1) is divided by 2-
77

,

then
(
1 . 1 ) can be rewritten in the form

N^N^x + N^N^y + N^N^Z ^ 1 . (
1 .2

)

Both positive and negative integer values for x, y and z are allowed, where a negative value,

say for x, will mean stepping a table in a counterclockwise direction x teeth. A positive

value indicates a clockwise turn.

It is clear that (1.2) will lead to negative values for x, y or z, if there exists any solution

triple. In order to work with positive integers x, y and z we will first look at a slightly

different problem. We wish to find the triple of integers x, y, z that will solve

A:(27r/625) + y(27r/729) + 2(27r/832) = 277 + 89^^. (1.3)

This means we want to find how many teeth to move each of the tables in order for the

topmost table to make one complete rotation plus the smallest increment. This would still

give us a relative motion of the topmost table of 89^^.

Using the previous notation, (1.3) can be rewritten as

N^N^x ^ N^N^y + N^N^z = + 1 . (1.4)

Equations (1.2) and (1.4), where all quantities are integers, are known as Diophantine

equations (see [2], p. 96). In this report we will show how elementary number theory can

be used to solve them. Of course, the solution could be found by a simple brute force

computer search, but the point of this article is to show an interesting application of

number theory. Furthermore, this problem has a long history connected with the subject

of gear ratios as applied to clocks and other mechanisms.

In section 2.0 we will present the elementary number theory results relevant to the solution

of (1.2) or (1.4). In section 3.0 we will solve (1.4) and in section 4.0 we will solve (1.2) and

consider some extension questions.
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2.0 Theoretical Background

2.1 Elementary Number Theoretic Properties

The solution of (1.4) rests on the fact that the division of integers can be written as a

quotient plus remainder. It is called the division algorithm, a proof of which can be found

in Stewart [2].

The Division Algorithm . Let a be an integer (the dividend) and b a given nonzero integer

(the divisor). Then there exist unique integers q (the quotient) and r (the remainder) such

that

a = qb + r, and 0 ^ r < \b\. (2.1)

The numbers q and r can be found in a finite number of steps.

A closely related concept to the division algorithm is that of the greatest common divisor

of two integers a and b. If a and b are integers and if there are integers A, B, d such that

a = Ad and b = Bd then d is called a common divisor of a and b. Now if is a common
divisor of a and b and every common divisor of a and b is also a divisor of d then d is

called a greatest common division of a and b and is designated

d = {a,b). (2.2)

Furthermore if a, b, c are three integers then the greatest common divisor of a, b, c is

designated by

d = (a, b, c). (2.3)

We note that in (2.3) we also have

d = {{a, b), c) = (a, (b, c)). (2.4)

ltd = (a, b) for integers a, b then d can be represented in terms of a and b. In particular,

given two nonzero integers a and b, their greatest common divisor d, which can be selected

to be positive, is related to a and b by

{a, b) = d = sa + t b (2.5)

where s and t are some integers (see [3], p. 18, or [2], p. 35).

In order to find the greatest common divisor of two integers, we use the Euclidean

Algorithm (for a proof see [3], p. 18-19). Here we only state the algorithm.
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Euclidean Algorithm . Let a and b be positive integers and suppose Q < b ^a. By the

division algorithm

a = q b r
, 0 <r < b.

If r = 0, stop, otherwise continue as follows:

b =q^r ^ , 0 < r, < r ,

where b > r > > r2 > . . . > = 0. The process terminates in a finite number of

steps. Then set

(
2 .6

)d = (a, b) =

Next we must introduce the notions of prime and relatively prime integers. An integer a

is prime if a is not 0 or +1 or -1 and if a is divisible by +1, -1, +a, -a only. Two integers,

a, b, are relatively prime if

(2.7)(a, b) = 1.

One easy way to check relatively primeness of two integers is to use the fact that any

nonzero integer can be factored uniquely into a product of positive primes. The product

is multiplied by +1, or -1 to attach the appropriate sign. Two nonzero integers are

relatively prime if they do not have common prime factors. As an example the tooth

numbers for the AAMACS tables are 832 (=(13)(2*)), 729 (=3^) and 625 (=5^). Since they

have no common factors, they are relatively prime.

Finally, as a tool for solving Diophantine equations we introduce the idea of a congruence

relation where two integers a and b are said to be congruent modulo an integer m if m
divides a - b. We will write this as
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a == b (mod m). (
2 .8

)

We will state some algebraic properties here without proofs (for proofs and other

properties see [3], pp. 23-25).

PI) If a = £> {mod m) then for all integers x,

a + X = b + X (mod m),

ax = bx (mod m),

-a = -b (mod m).

P2) If (c, m) = 1 and

ca = cb (mod m)

then

a = b (mod m).

This is a cancellation of factors property.

P3) If (c, m) = 1, then

cx = b (mod m)

has an integer solution. This is a division property.

P4) If (a, m) = d then

ax = b (mod m)

has no solution when d is not a divisor of b. If d divides b there are exactly d solutions.

(Stewart [2], p. 92)
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2.2 Diophantine Equations

The equations (1.2) and (1.4) are specific cases of the general Diophantine equation

ax + by + cz = n (2-9)

where a, b, c and n are integers and the problem is to determine integers x, y, z that satisfy

(2.9). The discussion of the solution method for (2.9) is based on [2], pp. 96-99.

We begin with a Diophantine equation in two unknowns

ax + by = n, (
2. 10

)

where a, x, b, y and n are integers. As a result of property P4 in the previous section (2.10)

has a solution pair of integers X and Y if and only ifd = (a, b) divides n. Every solution

is given in the form

X = X + Bt
, y = Y - At,

where a = Ad and b = Bd and t is an arbitrary integer.

Now consider (2.9). Write it in the form

ax + by = n - cz. (
2 . 11

)

The result above implies that, for a fixed z, (2.11) has integral solutionsX and Y if and only

if

n - cz = 0 (mod d^), (
2 .12

)
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where = (a, b), or using PI

cz = n (mod d^. (2.13)

But from property P4 again (2.13) has an integral solution provided d = {d^, c) divides n.

But d = (rfj, c) = {{a, b), c = (a, b, c). Therefore (2.9) has a solution triple if and only if

d = (a, b, c) divides n.

3.0 Gear Step Solution

In this section we will show two techniques for solving (1.4). The first makes direct appeals

to the results in section 2.0. The second is a somewhat more direct method that does not

completely rely on the number theory results in section 2.0.

3.1 Number Theoretic Method

We begin this section by introducing the following notation in (1.4). Let

a =

b = N^Ny

C = N,Ny
(3.1)

n = + 1.

Then (1.4) becomes

ax + by + cz = n. (3.2)

Write this in the form

ax + by = n - cz. (3.3)

9



For a fixed z this equation has a solution in integers x, y if and only if = (a, b) divides

n - cz or in congruence form

rt - cz = 0 (mod d^. (3.4)

Furthermore, every solution in integers x, y is given in the form

X = X + Bt,

y = Y -At,

where A, B are defined by

a = Ad^,

b = Bd^,

(3.6)

(3.6)

and t is an arbritary integer. At this point we need to solve (3.4) or

cz = n (mod d^). (3.7)

But this can be solved for z under the following conditions:

(1) lid = (c, d^), then cz = n {mod d^) has no solution when d is not an advisor of n.

(2) If d divides n, then there are exactly d solutions (i.e., d distinct modulo classes).

In our case we know that a = N2N2 ,
b = NiN^ and {Nj, N^) = 1 so that d^ = {N2N2,

= Ny Furthermore d = (c, d^) = {N
1
N2,

N^) = 1 since N^, N2,
are relative prime. Then

d obviously divides n = A^2 ^3 + Thus we can solve (3.7) for Z and all integers of the

form

z = Z + N^t^. (3.8)
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The selection of an integer t, is made in order to satisfy

-N^< z < (3.9)

where N-^ represents the number of teeth on gear 3. That is

-N^ < Z + N
3

< A^3

or

-1 - ZIN^ < < 1 -ZINy

For this z = Z + N^t-^ return to (3.3) to solve for x and y.

From (3.1), (3.6) and we have

A = a/d^ = Ny
B = bld^ = Ny

Therefore from (3.5) all solutions of (3.3) are given by

X = X + N^t,

y = Y -N^t,

for some t . Thus we seek an integer t so that both inequalities

-N^ < X < Ny
-N,<y < Ny

(3.10)

(3.11)

(3.12)

(3.13)
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are satisfied or that

-1 - XIN^ < t < \ - XIN^,

-1 + Y/N^ < t < 1 + Y/N^,

must hold simultaneously.

We now apply this argument to our specific case of the three tables with gear teeth

numbers

= 625,

= 729,

A^3 = 832.

Then (1.4) becomes

606528X + 520000y + 455625z = 379080000 + 1.

(3.15)

(3.16)

This is in the form (3.2) with

a = 606528,

b = 520000,

c = 455625,

n = 379080001.

(3.17)

First we find = (a, b) = (606528, 520000) = 832 = Ny Let d = (d, c) = (At,, Ni =
1. Now we must solve

cz = n (mod (3.18)
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or

455625Z = 379080001 (mod 832).

To do this we use the fact that c) = 1. This means that there exist integers s and t

such that

455625 5 + 832 f = 1. (3.19)

To compute them we use the Euclidean algorithm.

Step 1

Let a = 455625, b = 832. Find q^, so that

a = q b + r
,

Q < r < b.

Result: q^ = 547, = 521. Now write

''o
=
^ (3.20)

521 = a - 547 b.

Step 2

Find q-^, so that

b = q, r + r
, o < r, < r .^ 1 O 1 ’ 1 O

Result: q^ = 1,
= 311.
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Now, use (3.20), and write

''i
= ^ -

311 = Z? - 521,

= b - {a - 547b),

311 = -a + 54Sb.

Step 3

Find q2, r
2
so that

r
o

= ^2 ''l
+ 0 < r. < r.

Result: ^2 = 1, ^2 = 210. Now, use (3.20) and (3.21), and write

'2 =
''o

- ?2 ''l’

210 = 521 - 311,

= (a - 547b) - {-a + 548b),

210 = 2^2 - 1095B.

Step 4

Find ^3 ,
so that

'i
= 93 '2 '3 - 0 < r, < r,.

Result: = 1, rj = 101. Now, use (3.21), (3.22), and write

r2=r,- q^ ^3,

101 = 311 - 210,

= (-a + 548fo) - {la - 1095^),

101 = -la + 1643^.

(3.22)

(3.23)

14



Step 5

Find ^4, so that

''a

= ^4^3 + r. 0 < r, < r3*

Result: = 2, = 8. Now use, (3.22), (3.23), and write

^ = ''2 - ^4 '3’

8 = 210 - 2
(
101 ),

= (2a - 1095^) - 2(-3a + 1643^),

8 = 8a - 4381Z?.

Step 6

Find ^5, so that

''3 = ^5 '4 ^ ''5 ’
0 < ''5 < ''4*

Result: = 12, 7*5 = 5. Now, use (3.23), (3.24), and write

/•j =
^3 - ^5 ''4’

5 = 101 - 12(8),

= (-3a + 1643^) - 12(8a - 4381^),

5 = -99a + 54215^7.

Step 7

Find q^, so that

^4 = ^6 '5 ^ ''6 0 < r, < r^.

(3.24)

(3.25)
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Result: = 1, = 3. Now, use (3.24), (3.25), and write

''6 = ''4 - ^6 ^5

3=8-5
= (8a - 43816) - (-99a + 542156)

3 = 107a - 585966

Step 8

Fine q^, r-j so that

'*5 = ^7 ''6 ^ ’
0 < < r^.

Result: = 1, = 2. Now, use (3.25), (3.26) and write

'7 =
''S

- ^7 '*6’

2=5-3,
= (-99a + 542156) - (107a - 585966),

2 = -206a + 1128116.

Step 9

Find ^g, Tg so that

h =
• 0 < '« < '

7
-

Result: q^ = 1, Tg = 1. Now, use (3.26), (3.27) and write

^8 ^6 ^8

1=3-2,
= (107a + 585966) - (-206a - 1128116),

1 = 313a - 1714076.

(3.26)

(3.27)

(3.28)
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This step is as far as we need to go to solve (3.19) since in this case we can take

j = 313,

t = -171407,

in (3.19).

The final Euclidean algorithm steps yield.

Step 10

Find so that

r-, , 0 < r, «•,

Result: qg = 1, rg = 1.

Step 11

Find q-^Q, so that

h = 9io ho ’ 0 <
'lo

<'9

Result: q^Q = 1, = 0.

This terminates the Euclidean algorithm and confirms that a and b are relatively prime as

we also knew from a prime factor decomposition. That is

1 = 9io = {“• b).

We can now solve (3.18) using (3.28). Multiply (3.28) by 379080001 and get

379080001= a [(313) (379080001)] + b [(-171407) (379080001)]

17



379080001 = a (118652040313) + b (-64976965731407).

This result yields the solution for (3.18) as

Z = 118652040313.

We also have

= 832,

d = (832, 455625) = 1.

Therefore, we can write all solutions of (3.18) in the form (3.8) or

z = Z +

= 118652040313 + 832

We finally seek a value for so that 0 < z < 832. There is only one integer value for t

that satisfies the constraint and that is

= -142610625.

This yields the solution for z as

z = 313. (3.29)



Having found 2 we put (3.16) in the form (3.3) and get

606528 a: + 520000 y = 236469376. (3.30)

We note that (606528, 520000) = 832. Since 236469376 = (284218)(832) we can say that

(3.30) has a solution pair of integers X, Y and every solution is given by

X = X + Bt,

y = Y -At,
(3.31)

where

A = 606528/832 = 729,

B = 520000/832 = 625.

Using (2.2) we look for integers s and r so that

832 = 606528 j + 520000 r. (3-32)

Again, we apply the Euclidean algorithm technique. Set

a = 606528,

b = 520000.

Step 1

Find q^, so that

a = q b + r^ o o
0 < r < b.

o
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Result: q^, = \,r^ = 86528. Now write

r = a - q b = a - h.
O ^ O

(3.33)

Step 2

Find q^, so that

b = q, r + r, ,
0 < r, < r .

o 1 ’ 1 o

Result: qj
= 6, Fj = 832. Now write, using (3.33)

'i
= * - 9i

832 = b - 6(86528),
= b - 6(a - b),

832 = - 6a + lb.

(3.34)

Therefore (3.32) has a solution

s

r

-6
,

7.
(3.35)

To find X, Y for (3.30), multiply (3.34) by 284218 and get

236469376 = a( -1705308)
+ b(1989526)

(3.36)

from which we have the particular solutions

X = -1705308,

Y = 1989526.
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Finally we need to find a fixed t so that

-N^ < X + Bt < N^,

-N^ < Y - At < N^,

if it exists. These inequalities are

-625 < -1705308 + 625t < 625,

-729 < 1989526 - 729t < 729.

In fact there is only one integer satisfying both inequalites and is given by

t = 2729.

The final x, y solution sought is then

X - X + Bt = 317,

y = y - = 85.
(3.37)

Combining (3.37) with (3.29) gives the solution of (3.16) asx = 317, y = 85, z = 313. This

says that to position the topmost table to the smallest angular increment 80^:^, set all tables

to their reference 0 mark. Then move the largest table clockwise 313 teeth from the

reference, the middle table 85 teeth clockwise and finally the topmost table 317 teeth. The
end result will be to move the topmost table 27r + 89^ radius, which is equivalent to

moving it 80^^^.

3.2 Constraint Method

The first steps of this method, proposed by the second author, stiU require proceeding

through the Euclidean Algorithm to obtain z = 313 in (3.29) and finally (3.30). At this

point divide (3.30) by = 832 to obtain the Diophantine equation

729 X + 625 y = 284218 (3.38)



to be solved for integers x, y subject to the constraints

-625 < X < 625, (3.39a)

-729 < >^ < 729. (3.39b)

First, rewrite (3.38) as

625 y = -729 jc + B,
= -625 X -104 X + B,

(3.40)

where

B = 284218. (3.41)

Then, from (3.40) write

y = -a: + (B-104x)/625. (3.42)

Since x and y are integers any solution of (3.42) requires that there be an integer such

that

B - 104r = (625),

= (624 + 1) r^,

= 6(104) + r^.

or

a: = - 6 r, + (5-rJ/104. (3.43)



Again, since x, are to be integers then there must exist an integer r2 such that

B - = 104 r^. (3.44)

Now we use constraint (3.39a) and (3.43) to bound r^. That is, if we set

-625 < - 6 + {B-rym < 625

then

(5/625) - 104 < r^< (5/625) + 104. (3.45)

Using (3.41), this inequality gives a bound on of

350.7 < r^< 558.8. (3.46)

This is too wide a range to uniquely select r-^ so we must estimate r
2
from (3.44) and (3.45)

-1 + (5/104)(624/625) < < (5/104)(624/625) + 1

or

2727.4 < r^< 2729.5.

There are only two integers satisfying this last inequality, i.e., r2 = 2728 and r2 = 2729.

First, let r2 = 2729. Then from (3.44) = 402 and from (3.43) and (3.42)

a: = 317,

y = 85,
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as obtained in section 3.1. Next let r2 = 2728. Then = 506 and

X = -308,

y = 814.

Although y falls out of the range -729 < y < 729 we can interpret the triple

X = -308,

y = 814,

z = 313.

First note that 308 -I- 317 = 625. This x = -308 moves the 625 tooth table

counterclockwise 308 teeth. This would position it at the same tooth asx = 317. Finally,

note that 814 = 729 -I- 85. Setting y = 814 just rotates the 729 tooth table one complete

revolution plus 85 teeth. So, although this is not a formal solution satisfying the

constraints, it can be interpreted physically. Since the physical table has stops to prevent

the individual toothed gears from rotating more than one revolution in the clockwise or

counterclockwise direction this second solution is not physically feasible and thus must be

disallowed.

4.0 Related Problems

The first problem that we will consider is whether (1.2) has a solution. In this case, we
again have = 625, = 832, (1.2) becomes

606528X + 52000()y + 455625z = 1. (4-1)

Now set a = 606528, b = 520000, c = 455625 and n = 1. Then we have (2.7)

ax + by = n - cz. (^•^)

24



Since d-^ = {a, b) = = 832 then we look for a z that

cz = 1 (mod 832) (4.3)

but this has a solution provided d = (c, d-^) = (A^^ N2,
N^) = 1 divides n = 1. Therefore,

(4.3) can be solved for Z and all integers of the form

z = Z + 832 (4.4)

where z must satisfy

-832 < z < 832. (4.5)

But, from (3.28), Z = 313 which implies that = 0 or -1. If = -1 then z = -519 and

(4.1) yields

606528 a: + 520000 y = 236469376. (4.6)

Multiplying (3.34) by 284218 one finds

X = -1705308,

Y = 1989526.
(4.7)

Using (3.12) and 3.13) it is possible to show that there is no value t for which (3.13) is

satisfied. Therefore t^, cannot be -1. Set = 0 then z = 313. From (4.1)

606528 a: + 520000 y = -142610624.

25



Multiplying (3.34) by -171407 one finds

a: = 1028442,

y = -1199849.
(4.9)

From (4.9), (3.12) and (3.13) we look for an integer t that satisfies

-625 < 1028442 + 625 r < 625, (4.10a)

-729 < -1199849 - 119 t < 729. (4.10b)

These can be solved for a single integer t. In fact t = -1645. Then

a: = 317

y = -644

We note that y = -644 means that the 729 toothed table is moved counterclockwise 644

teeth which would position it at the same tooth as setting y = 85. Therefore, this is the

complementary solution and problem (1.2) is solvable.

A natural question arises. Are there legitimate settings of the indexed tables that will move
the topmost table two or more full revolutions plus 50^^^. A complete examination of this

question is beyond the scope of this report but we will show that the answer is no for the

case of 2 + revolutions.

As before = 625, N2 = 729, = 832 and (3.2) becomes

N^N^x + N^N^y + N^N^z = 2{N^ N^) + 1 (4.11)
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Next we form

N,N,x^ N^N,y = 2{N, N, N,) - N,N,z (4.12)

(4.12) has a solution x, y if and only if = (N2 N^, N^) = = 832 divides 2 (N^ N2 N^)

+ 1 - N
1
N2 Z, or

N^N^z = 2{N^ N
3)

+ 1 (mod N^) (4.13)

or

455625 z = 75816001 (mod 832). (4.14)

To solve this we note that (455625, 832) = 1 so that we can solve for integers s and t such

that

455625 X + 832 ? = 1. (4.15)

But (4.15) is again (3.19) so that

5 = 313,

t = -171407.

Now we multiply both sides of (4.15) by 758160001 and get

455625 ((313) (758160001) + 832((-171407) (758160001)) = 758160001 (4-16)

and get



455625 (237304080313) + 832( -129953931291407) = 758160001. (4-17)

Thus a particular solution for Z in (4.14) is given by

Z = 237304080313. (4-18)

Since = 832 and d = (832, 455625) = 1 we can write all solutions of (4.14) in the

form

z = Z +

= 237304080313 + 832
(4.19)

We now look for an integer so that

-832 < 237304080313 + 832 < 832. (4.20)

An integer solution of this inequality is given by

= -285221250. (4.21)

From (4.19)

z = 313 (4.22)

which again is the same as previous results. Substituting this into (4.12) we see that we
must solve

606528 a: + 520000 y = 615549376 (4-23)

for -625 < a: < 625, -279 < y <729. But 615549376 = (832)(739843) so that we can look
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for a solution of

606528 5 + 520000 r = 832. (4.24)

But from (3.34) this is j = -6, r = 7. Multiply (4.24) by 739843 gives

;c = -4439058,

y = 5178901.
(4.25)

Using (3.12) and (3.13) one needs to solve for t such that

-625 < -4439058 + 625 r < 625, (4.26a)

-729 < 5178901 - 729 t < 729. (4.26b)

But we see that (4.26a) yields the potential candidate t = 7102 and (4.26b) yields a

different potential candidate 7104. Since there is no common t value satis^ng both

inequalities this problem is not solvable.

As a final note, we see that once a procedure for 89^^ has been determined the required

tooth address for any final angular position is determined.
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